Рубрики

вспомогательный угол

Решим уравнение:

    \[\sqrt3\sin 3x + \cos 3x = \sqrt2\]

        Для начала найдем сумму квадратов коэффициентов при синусе и косинусе и разделим все уравнение на корень квадратный из этой суммы:

\sqrt3\sin 3x + \cos 3x = \sqrt2  \left|  :\sqrt{(\sqrt3)^2 + 1^2 )}

⇒   \sqrt3\sin 3x + \cos 3x = \sqrt2  \left|  : 2

    \[\frac{\sqrt3}{2} \sin 3x + \frac{1}{2} \cos 3x = \frac{\sqrt2}{2}\]

А теперь заменяем  \frac{\sqrt3}{2} = \sin φ,   a  \frac{1}{2} = \cos φ.   Или   \frac{\sqrt3}{2} = \cos φ φ,   a  \frac{1}{2} = \sin φ.  Я возьму первый вариант, но вы выбираете, какой хотите.

    \[\sin\phi  \sin 3x + \cos\phi \cos 3x = \frac{\sqrt2}{2}\]

Читать далее