Рубрики

Пример решения задачи →

Содержание:

1.Уравнение прямой и плоскости
2. Векторы и их координаты
3. Метод координат

Метод координат… Что же это такое и зачем он нужен? Можно ли без него обойтись при сдаче ЕГЭ. Можно, безусловно! Все задачи №14 профильного ЕГЭ по математике решаются и без привязки фигур к системе координат. Но…  координатный метод может значительно упростить решение самых сложных вопросов, таких, как определение расстояний и углов между прямыми и плоскостями в пространстве, так как там все эти расчеты сводятся, практически, к одной формуле.

        Чтож, будем разбираться!

Уравнения прямой и плоскости

           Вспомните, как вас знакомили с системой координат и объясняли, что положение каждой точки в системе координат можно определять координатами х и у. Это точки M(xm; ym) и N(xn; yn)

          Как известно, прямую можно провести через две точки, и при том, только одну. Задача по определению уравнения прямой на плоскости, проходящей через две точки, координаты которых известны, решалась очень просто. В этом случае в уравнение прямой y=kx+b подставляли сначала координаты точки М, затем – точки N.

       Получали систему двух линейных уравнений относительно неизвестных коэффициентов k и b, которые находили при решении  этой системы.

        Но уравнение прямой на плоскости можно задать и по-другому:

Ax + By + C = 0,       (A² + B² ≠ 0)

И суть от этого не изменится, изменятся только коэффициенты. Условие в скобках означает, что А и В не могут быть равны нулю одновременно.

        Стереометрия рассматривает фигуры в пространстве, где каждая точка описывается уже тремя координатами – (x, y, z).

       Уравнение прямой в пространстве задается через направляющий вектор. Но это уже не входит в рамки программы средней школы, поэтому просто принимаем к сведению.

            Если известны две точки пространства  M( xm ; ym ; zm ) и  N( xn ; yn ; zn ) , то уравнения прямой, проходящей через данные точки, выражаются формулами:

    \[\frac{x-x_m}{x_n-x_m}=\frac{y-y_m}{y_n-y_m}=\frac{z-z_m}{z_n-z_m}\]

 

             Но вот что мы с вами можем, так это воспользоваться вектором этой прямой, который будет определяться расстоянием между точками в пространстве. И об этом подробно поговорим в следующем разделе —  векторы и координаты

          Привязка фигур к  системе координат позволяет не только определять координаты точек, но и записать уравнение плоскости. Как известно, на трех точках можно построить плоскость, притом, только одну. Соответственно, можно и записать плоскость уравнением. Выглядит это уравнение следующим образом:

  Ax + By + Cz + D = 0

 Очень похоже на вторую запись уравнения прямой на плоскости. Значит, и коэффициенты  А, В, С и D мы будем находить также, как и коэффициенты для прямой на плоскости, по точкам.

       Это действие сродни тому, что вы производили, определяя уравнение прямой, проходящей через две точки, заданные координатами.

       Прямую можно провести через две точки, и мы составляли два уравнения для двух точек.

         Плоскость можно провести через три точки, значит, и уравнений будет три!

        Но уравнений три, а неизвестных – четыре! Ну, и что! Мы же можем разделить все уравнения на D, при этом они не изменятся, будут равнозначны первоначальным! Так и будем поступать! Тогда   вместо D   будет единица, а все остальные коэффициенты будут делиться на D,  назовем их также, А, В, С. И это уже вполне решаемая система!

          Здесь значения всех x, y и z известны, это координаты точек, принадлежащих данной плоскости.

          Итак, точку описать можем, прямую описать можем, плоскость –  можем. Осталось вспомнить сами векторы и их координаты, они нам тоже пригодятся при решении задач.

 

Векторы и их координаты

          Вектор – это математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой.

          Мы можем «привязать» вектор к системе координат, т.е. мы можем его определять в пространстве координатами его проекций на координатные плоскости.

       Если даны две точки в пространстве А(xa; ya; za) и B(xb; yb; zb), то дан и вектор 

, где ах, ау и аz – координаты вектора.  Осталось определить значения ах, ау и аz. Определяем:

ах = xb xa                       

ау = yb ya                       

аz = zb  –  zа                       

 

       Теперь, зная длины проекций вектора, мы можем легко найти длину вектора, которая, как видно из чертежа, есть не что иное, как диагональ параллелепипеда, сторонами которого являются координаты этого вектора. Его длина, модуль вектора, будет равна:

     А что есть длина вектора, как не расстояние между двумя точками: началом и концом вектора? То есть выведенная формула определяет расстояние между двумя точками в декартовой системе координат.

 

Метод координат

  •  Расстояние между точками  А(xa; ya; za и B(xb; yb; zbвыражается формулой, показанной в предыдущей главе:
  •   Расстояние от точки   M(xm; ym;zm до плоскости α, заданной общим уравнением  Ax + By + Cz + D = 0, может быть вычислено по формуле: 
  •  Расстояние между параллельными плоскостямии  α1 и α2   (α1Ax + By + Cz + D1 =0   и   α2Ax + By + Cz + D2 = 0) вычисляется по формуле:
  •   Угол между скрещивающимися прямыми. Косинус угла между ними (острого) определяется по декартовым координатам векторов этих прямых:Тогда формула приобретает следующий вид:
  •  Угол между плоскостями α и β, заданными уравнениями можно найти с помощью следующей формулы:

 Пример решения задач→