Тригонометрический круг→
Содержание:
Поговорим о тригонометрии
Вопрос:»Что такое тригонометрия?» Сразу представляю себе ответ: «Ну…., это когда синус или косинус…» «А что такое синус и косинус?» — «Ну…, отношение катетов к гипотенузе…» «То есть — геометрия?» — «???…» Нет, конечно не геометрия! Представьте себе угол в 1000° . Представили? Нет!.. А отрицательный угол? Нет таких углов!!! На 90° заканчивается прямоугольные треугольники, которые и дали определение для синусов, косинусов, тангенсов и котангенсов. На 180° заканчивается треугольник, на 360° — планиметрия. Что же тогда такое — тригонометрия? Разберемся… Начнем с двух основных понятий — синуса и косинуса. Что вы о них знаете кроме того, что это отношения катетов и гипотенузы? Вспомнили? сумма квадратов синуса и косинуса равны единице.
Sin²α + Cos²α = 1
А помните, как выглядит уравнение окружности с центром в начале координат, радиус которой R?
x² + y² = R²
А если радиус R = 1, то это уравнение будет выглядеть x² + y² = 1. Согласитесь, это очень похоже на основное тригонометрическое уравнение! А что особенно любят школьники, решая уравнения с неудобными выражениями? Заменять их, делать равносильную замену на какую-нибудь букву. Сделаем тоже замену двух неизвестных x² и y² на Sin²α и Cos²α, получим равносильное уравнение. Получается, что тригонометрия — это раздел математики, позволяющий решать некоторые уравнения гораздо проще, если их неизвестные удовлетворяют условиям:
Тогда неизвестную можно заменить на синус или косинус.
А проще потому, что в тригонометрии появляются дополнительные формулы для расчетов. Неизвестными в тригонометрии становятся уже не отдельные буквы, а тригонометрические функции: sin x, cos x, tg x, ctg x,
где , а
Тригонометрические функции
Почему функции? Напомню, что же такое — функции. Функция — это отношение между двумя зависимыми друг от друга величинами, которое записывается в виде математической формулы, определяющей эту зависимость. При этом изменение одной величины ведет к изменению другой величины. Подробнее→
В случае тригонометрических функций, величина у меняется с изменением величины х, формула — это сами синус, косинус, тангенс и котангенс.
Графики этих функций приведены ниже:
![]() |
функция y(x) = sin x |
![]() |
функция y(x) = cos x |
![]() |
функция y(x) = tg x |
![]() |
функция y(x) = ctg x |
Получается, что синус, косинус, тангенс и котангенс — это математические выражения, связывающие два неизвестных. А значит, мы можем их, эти неизвестные, находить. А поможет нам в этом великолепная классическая «шпаргалка» — тригонометрический круг.
Но прежде, чем мы перейдем к тригонометрическому кругу, определимся со значениями аргумента тригонометрической функции х, который может меняться от минус бесконечности до плюс бесконечности.
x ∈ ( — ∞; + ∞).
В этом случае целесообразно отвлечься от градусной меры углов и вспомнить, что углы измеряются также радианами – просто числами, определяемыми через всем известное число π, соответствующее 180°-ному углу, и π = 3,141582….. И тогда x — это уже не углы, а числа .
Строим тригонометрический круг
Чертим на плоскости декартову систему координат, а в ней графически изображаем уравнение :
х² + у² = 1,
то есть, чертим круг радиусом, равным 1.
Рассмотрим точку М(хо, уо), принадлежащую первой четверти окружности, и треугольник, где хо, уо координаты точки, а 0М – радиус окружности, равный 1. Получается, что отношение уо к радиусу есть ничто иное, как синус угла α, а отношение хо к радиусу – косинус угла α. А это значит, что координаты любой точки на окружности радиусом, равным 1 – это синус и косинус угла, образованного осью 0х и радиус-вектором точки М, то есть отрезком ОМ.
Тогда наш круг можно представить следующим образом:→
Выходит, что по оси Оу получаем значения синусов аргумента, назовем ее «ось синусов», а по оси Ох — значения косинусов, получаем как бы «ось косинусов». При этом, разумеется, значения синусов и косинусов не выходят за пределы круга. Просто, потому что не могут в силу своей ограниченности! Ну, а мы с вами имеем возможность определятся с синусами и косинусами уже не углов, а аргумента х ∈ ( — ∞; + ∞). Почему? А потому что тригонометрические функции — периодические, т.е. просто «вертятся» по кругу. При этом значения синусов и косинусов определяются значениями координат точек на окружности со всеми их знаками. Например, согласно рисунку, координата у точки на окружности, соответствующей углу
, определяет
, а координата х определяет
.
С синусами и косинусами разобрались. А как же тангенсы и котангенсы? С ними тоже не возникнет проблем. Тангенс определяется:
Вот и проводим «ось тангенсов» там, где cos α равен 1. Аналогично поступаем и с «осью котангенсов» В отличие от синусов и косинусов тангенсам и котангенсам прямую проводим через начало координат. То есть на круге два угла для тангенса и два угла для котангенса. Оно и понятно: период функций тангенса и котангенса составляет π, а не 2π, как у функций синуса и косинуса.